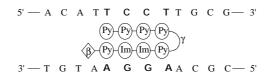
Synthesis of Pyrrole-Imidazole Polyamide

Jun Hua XIAO¹, Gu YUAN¹*, Wei Qiang HUANG¹, Fei Li TANG¹ Albert S. C. CHAN², K.L. Daniel LEE²

¹Bioorganic Molecular Engineering Laboratory, Department of Chemistry, Peking University, Beijing 100871 ²Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, HK

Abstract: One simple and versatile method is established for the synthesis of DNA recognition molecules—polyamides containing alternating N-methylpyrrole and N-methylimidazole without necessitating NH₂- group protection.

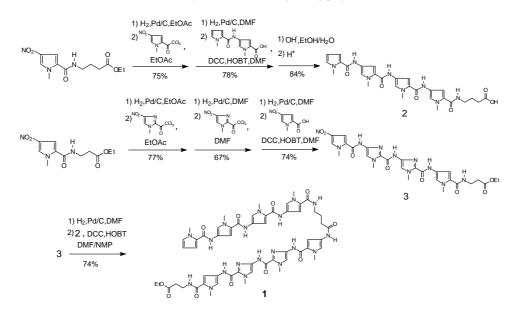

Keywords: Polyamides, DNA recognition molecules, pyrroles and imidazoles.

Small molecules that target specific predetermined DNA sequences have the potential to control gene expression¹. Realization of the high affinity binding and specific recognition of DNA sequences by organic molecules is one of the focuses of biological chemistry. The natural products netropsin and distamycin are N-methylpyrrole containing di- and tripeptides, with binding specificity at sites of successive A·T or T·A base pairs of DNA in the minor groove². Recently, N-methylimidazole is introduced into polyamides for the recognition of G·C or C·G base pairs³. This is a basis for recognition of four Watson-Crick base pairs of B-DNA; it provided impetus to develop an ensemble of motifs, which recognize a broad range of DNA sequence.

Our interest is focused on synthesis of polyamides containing N-methylpyrrole (Py) and N-methylimidazole (Im) that have high affinity and specificity for recognition of DNA comparable to naturally occurring molecules. In this article, the binding sequence (5'-TCCT-3') of natural calicheamicin γ with DNA is chosen as the target site for designing a novel polyamide.

In designed polyamide, antiparallel pairing of Py/Py recognizes a T·A base pair; Py/Im targets a C·G base pair¹. The γ -aminobutyric acid (γ) will facilitate the formation of γ -turn and the β -alanine (β) will increase the affinity of polyamide to DNA ².

Figure 1. Schematic binding model of hairpin polyamide with 5'-TCCT-3'



The polyamide PyPyPyPyPyPyImImPy β OEt (1) was conveniently constructed by the chloroform and DCC/HOBT coupling reaction. By using the chloroform

Jun Hua XIAO et al.

reaction, NO₂PyPyγOEt (I) and NO₂ImImPy β OEt (II) were obtained in good yields. The PyPyCOOH and NO₂PyCOOH were introduced to (I), (II) by DCC/HOBT coupling reaction to give PyPyPyγOEt (III) and NO₂PyImImPy β OEt (3), respectively. After saponification and neutralization, (III) was transformed into PyPyPyγCOOH (2). Hydrogenating the sub-chain (3) and coupling with another sub-chain (2) activated by DCC/HOBT, the target product (1) was achieved in satisfactory yield. The structure of this eight-ring polyamide (1) was confirmed by a combination of ¹H-NMR, ¹³C-NMR, IR and MALDI-TOF-MS.

Scheme 1. Synthetic route of eight-ring polyamide

Conclusion

This procedure is a facile and versatile method for synthesis of various polyamides-DNA recognition molecules without necessitating NH_2 - group protection. The biological activities will be tested in due course.

Acknowledgment

We are grateful to Professor Pang Zhang for his encouragement. The project is supported by the National Natural Science Foundation of China (29872001).

References

1. J. M. Gottesfeld, L. Neely, J. W. Trauger, E. E. Baird and P. B. Dervan, *Nature*, 1997, 387, 202.

2. J. G. Pelton and D. E. Wemmer, J. Am. Chem. Soc., 1990, 112, 1393.

3. D.S.Pilch, N. Klar, E. E. Baird, P. B. Dervan and K. J. Breslaer, Biochemistry, 1999, 38, 2143.

Received 15 October 1999

209